Methylomics of nitroxidative stress on precancerous cells reveals DNA methylation alteration at the transition from in situ to invasive cervical cancer

نویسندگان

  • Po-Hsuan Su
  • Yao-Wen Hsu
  • Rui-Lan Huang
  • Yu-Chun Weng
  • Hui-Chen Wang
  • Yu-Chih Chen
  • Yueh-Ju Tsai
  • Chiou-Chung Yuan
  • Hung-Cheng Lai
چکیده

Epigenetic dysregulation is important in cervical cancer development, but the underlying mechanism is largely unknown. Increasing evidence indicates that DNA methylation is sensitive to changes in microenvironmental factors, such as nitric oxide (NO) in the chronic inflammatory cervix. However, the epigenomic effects of NO in cancer have not been investigated. In this study, we explored the methylomic effects of nitroxidative stress in HPV-immortalized precancerous cells. Chronic NO exposure promoted the acquisition of malignant phenotypes such as cell growth, migration, invasion, and anchorage-independent growth. Epigenetic analysis confirmed hypermethylation of PTPRR. Whole-genome methylation analysis showed BOLA2B, FGF8, HSPA6, LYPD2, and SHE were hypermethylated in cells. The hypermethylation BOLA2B, FGF8, HSPA6, and SHE was confirmed in cervical scrapings from invasive cancer, but not in CIN3/CIS, CIN2 and CIN1 (p=0.019, 0.023, 0.023 and 0.027 respectively), suggesting the role in the transition from in situ to invasive process. Our results reveal that nitroxidative stress causes epigenetic changes in HPV-infected cells. Investigation of these methylation changes in persistent HPV infection may help identify new biomarkers of DNA methylation for cervical cancer screening, especially for precancerous lesions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prevalence Of Human Papilloma Virus Among Women With Cervical Intraepithelial Neoplasia III And Invasive Cervical Cancer From 2001 To 2006 In Bandarabas

  Background and Objective: To estimate the risk of human papilloma virus (HPV) infection for cervical malignancies, we conducted a case-control study in southern Iran (Hormozgan province). Materials and Methods: For this purpose,52 paraffin embedded blocks with exact diagnosis of cervical carcinoma(50 carcinomas and 2 carcinomas in situ) from 2001 to 2006 and 52 praffin embedded blocks of ce...

متن کامل

Aberrant DNA methylation in cervical Carcinogenesis

Persistent infection with high-risk types of human papillomavirus(HPV) is known to cause cervical cancer; however, additional genetic and epigenetic alterations are required for progression from precancerous disease to invasive cancer. DNA methylation is an early and frequent molecular alteration in cervical carcinogenesis. In this review, we summarize DNA methylation within the HPV genome and ...

متن کامل

Study of the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of CDH1, GSTP1 genes in MDA-MB -453 cell line

Promoter methylation is one of the main epigenetic mechanisms that lead to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifi...

متن کامل

Screening for cervical cancer and precancerous lesions in Tabriz

 Abstract Background: Cervical cancer is the most common female genital tract malignancy and is the major cause of death from gynecologic cancer worldwide. The majority of cervical cancers develop through a series of gradual, precancerous lesions. Screening asymptomatic women with regular Pap smears allows diagnosis of the readily treatable preinvasive phase. We performed this study to determin...

متن کامل

Study of the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of CDH1, GSTP1 genes in MDA-MB -453 cell line

Promoter methylation is one of the main epigenetic mechanisms that lead to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017